Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Journal of Liquid Chromatography & Related Technologies ; 45(13-16):191-203, 2022.
Article in English | ProQuest Central | ID: covidwho-2296266

ABSTRACT

More than 2.9 million people have died as a result of the global demographic impact of the coronavirus illness of 2019 (COVID-19). Numerous antiviral and anti-inflammatory medications have FDA approval to treat COVID-19 patients. For the simultaneous determination of COVID-19 utilized medications (Remdesivir, Moxifloxacin, Dexamethasone, Apixaban, and paracetamol) in their dosage forms, a sensitive technique has been developed and validated. The aforementioned medications were separated and quantified with the help of experimental design. The Box-Behnken design was used in the experiment to optimize the chromatographic method's analytical parameters. It employed RP-HPLC with a UV detector. An INERTSIL ODS-3 C18 column (5 µm, 250 × 4.6 mm) with mobile phase composed of acetonitrile: 30 mmoL potassium dihydrogen phosphate buffer (pH = 7.5) (50:50, v/v), at room temperature was employed to separate the aforementioned drugs. Paracetamol was linear over the concentration range (1–50 µg/mL), Moxifloxacin (5–70 µg/mL), Apixaban (5–70 µg/mL), Dexamethasone (1–100 µg/mL), and Remdesivir (5–100 µg/mL). According to ICH guidelines, the new approach underwent thorough validation. Between the proposed method's results and those from the reference or reported methods, there was no significant difference. The technique is simple to use in research of the cited medications in their dosage forms for quality control aspects.

2.
Int J Pharm ; 638: 122941, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2295765

ABSTRACT

The recent Covid-19 pandemics led to the increased use of facial masks, which can cause skin lesions due to continuous pressure, tension and friction forces on the skin. A preventive approach is the inclusion of dressings between the face and the mask. However, there are still uncertainties about the protective effect of dressings and whether their use compromises the efficiency of masks. The current study aimed to develop and test the efficacy of a gelatin-based hydrogel patch to be placed between the mask and the facial area. Design of Experiment with a Quality by Design approach tools were used in the patch development and in vitro characterization was performed through rheological evaluation, ATR-FTIR and molecular docking studies. Furthermore, tribology studies were performed to test the patch performance. The results showed that the addition of excipients enhanced gelation temperature, elasticity and adhesiveness parameters. The interactions between excipients were confirmed by ATR-FTIR and molecular docking. The tribology assay revealed similar friction values at room and physiological temperature, and when testing different skin types. In conclusion, the physical properties and the performance evaluation reported in this study indicate that this innovative film-forming system can be used to prevent skin lesions caused by the continuous use of protective masks.


Subject(s)
COVID-19 , Skin Diseases , Humans , COVID-19/prevention & control , Masks , Gelatin , Hydrogels , Excipients , Molecular Docking Simulation
3.
Journal of Liquid Chromatography & Related Technologies ; : 1-13, 2023.
Article in English | Academic Search Complete | ID: covidwho-2222298

ABSTRACT

More than 2.9 million people have died as a result of the global demographic impact of the coronavirus illness of 2019 (COVID-19). Numerous antiviral and anti-inflammatory medications have FDA approval to treat COVID-19 patients. For the simultaneous determination of COVID-19 utilized medications (Remdesivir, Moxifloxacin, Dexamethasone, Apixaban, and paracetamol) in their dosage forms, a sensitive technique has been developed and validated. The aforementioned medications were separated and quantified with the help of experimental design. The Box-Behnken design was used in the experiment to optimize the chromatographic method's analytical parameters. It employed RP-HPLC with a UV detector. An INERTSIL ODS-3 C18 column (5 µm, 250 × 4.6 mm) with mobile phase composed of acetonitrile: 30 mmoL potassium dihydrogen phosphate buffer (pH = 7.5) (50:50, v/v), at room temperature was employed to separate the aforementioned drugs. Paracetamol was linear over the concentration range (1–50 µg/mL), Moxifloxacin (5–70 µg/mL), Apixaban (5–70 µg/mL), Dexamethasone (1–100 µg/mL), and Remdesivir (5–100 µg/mL). According to ICH guidelines, the new approach underwent thorough validation. Between the proposed method's results and those from the reference or reported methods, there was no significant difference. The technique is simple to use in research of the cited medications in their dosage forms for quality control aspects. [ FROM AUTHOR]

4.
Eng Life Sci ; 23(2): e202200056, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2219696

ABSTRACT

Quality by Design (QbD) is one of the most important tools for the implementation of Process Analytical Technology (PAT) in biopharmaceutical production. For optimal characterization of a monoclonal antibody (mAb) upstream process a stepwise approach was implemented. The upstream was divided into three process stages, namely inoculum expansion, production, and primary recovery, which were investigated individually. This approach enables analysis of process parameters and associated intermediate quality attributes as well as systematic knowledge transfer to subsequent process steps. Following previous research, this study focuses on the primary recovery of the mAb and thereby marks the final step toward a holistic characterization of the upstream process. Based on gained knowledge during the production process evaluation, the cell viability and density were determined as critical parameters for the primary recovery. Directed cell viability adjustment was achieved using cytotoxic camptothecin in a novel protocol. Additionally, the cell separation method was added to the Design of Experiments (DoE) as a qualitative factor and varied between filtration and centrifugation. To assess the quality attributes after cell separation, the bioactivity of the mAb was analyzed using a cell-based assay and the purity of the supernatant was evaluated by measurement of process related impurities (host cell protein proportion, residual DNA). Multivariate data analysis of the compiled data confirmed the hypothesis that the upstream process has no significant influence on the bioactivity of the mAb. Therefore, process control must be tuned towards high mAb titers and purity after the primary recovery, enabling optimal downstream processing of the product. To minimize amounts of host cell proteins and residual DNA the cell viability should be maintained above 85% and the cell density should be controlled around 15 × 106 cells/ml during the cell removal. Thereby, this study shows the importance of QbD for the characterization of the primary recovery of mAbs and highlights the useful implementation of the stepwise approach over subsequent process stages.

5.
Appl Microbiol Biotechnol ; 106(23): 7933-7948, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2103864

ABSTRACT

Serology assays are essential tools to mitigate the effect of COVID-19, help to identify previous SARS-CoV-2 infections or vaccination, and provide data for surveillance and epidemiologic studies. In this study, we report the production and purification process of the receptor-binding domain (RBD) of SARS-CoV-2 in HEK293 cells, which allowed the design, optimization, and validation of an indirect ELISA (iELISA) for the detection of human anti-RBD antibodies. To find the optimal conditions of this iELISA, a multivariate strategy was performed throughout design of experiments (DoE) and response surface methodology (RSM), one of the main tools of quality by design (QbD) approach. The adoption of this strategy helped to reduce the time and cost during the method development stage and to define an optimum condition within the analyzed design region. The assay was then validated, exhibiting a sensitivity of 94.24 (86.01-98.42%; 95% CI) and a specificity of 95.96% (89.98-98.89%; 95% CI). Besides, the degree of agreement between quality results assessed using kappa's value was 0.92. Hence, this iELISA represents a high-throughput technique, simple to perform, reliable, and feasible to be scaled up to satisfy the current demands. Since RBD is proposed as the coating antigen, the intended use of this iELISA is not only the detection of previous exposure to the virus, but also the possibility of detecting protective immunity. KEY POINTS: • RBD was produced in 1-L bioreactor and highly purified. • An iELISA assay was optimized applying QbD concepts. • The validation procedure demonstrated that this iELISA is accurate and precise.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , HEK293 Cells , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Spike Glycoprotein, Coronavirus
6.
MAbs ; 14(1): 2060724, 2022.
Article in English | MEDLINE | ID: covidwho-1774258

ABSTRACT

As of early 2022, the coronavirus disease 2019 (COVID-19) pandemic remains a substantial global health concern. Different treatments for COVID-19, such as anti-COVID-19 neutralizing monoclonal antibodies (mAbs), have been developed under tight timelines. Not only mAb product and clinical development but also chemistry, manufacturing, and controls (CMC) process development at pandemic speed are required to address this highly unmet patient need. CMC development consists of early- and late-stage process development to ensure sufficient mAb manufacturing yield and consistent product quality for patient safety and efficacy. Here, we report a case study of late-stage cell culture process development at pandemic speed for mAb1 and mAb2 production as a combination therapy for a highly unmet patient treatment. We completed late-stage cell culture process characterization (PC) within approximately 4 months from the cell culture process definition to the initiation of the manufacturing process performance qualification (PPQ) campaign for mAb1 and mAb2, in comparison to a standard one-year PC timeline. Different strategies were presented in detail at different PC steps, i.e., pre-PC risk assessment, scale-down model development and qualification, formal PC experiments, and in-process control strategy development for a successful PPQ campaign that did not sacrifice quality. The strategies we present may be applied to accelerate late-stage process development for other biologics to reduce timelines.


Subject(s)
COVID-19 , Pandemics , Animals , CHO Cells , COVID-19/prevention & control , Cell Culture Techniques , Cricetinae , Cricetulus , Humans
SELECTION OF CITATIONS
SEARCH DETAIL